Monday, May 10, 2010

introduction to programming

Introduction to Programming


A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has to perform depends on what happened when it performed a previous instruction. This section gives an overview of the two main ways in which you can give these instructions, or “commands” as they are usually called. One way uses an interpreter, the other a compiler. As human languages are too difficult for a computer to understand in an unambiguous way, commands are usually written in one or other languages specially designed for the purpose

Interpreters

With an interpreter, the language comes as an environment, where you type in commands at a prompt and the environment executes them for you. For more complicated programs, you can type the commands into a file and get the interpreter to load the file and execute the commands in it. If anything goes wrong, many interpreters will drop you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be corrected readily. The biggest disadvantage comes when you want to share your programs with someone. They must have the same interpreter, or you must have some way of giving it to them, and they need to understand how to use it. Also users may not appreciate being thrown into a debugger if they press the wrong key! From a performance point of view, interpreters can use up a lot of memory, and generally do not generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before. This kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also be argued that the UNIX® shell (sh, csh) is itself an interpreter, and many people do in fact write shell “scripts” to help with various “housekeeping” tasks on their machine. Indeed, part of the original UNIX philosophy was to provide lots of small utility programs that could be linked together in shell scripts to perform useful tasks.

Compilers
Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then run the compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the editor; if it did compile and gave you a program, you can run it either at a shell command prompt or in a debugger to see if it works properly. [1]

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things which are very difficult or even impossible with an interpreter, such as writing code which interacts closely with the operating system--or even writing your own operating system! It is also useful if you need to write very efficient code, as the compiler can take its time and optimize the code, which would not be acceptable in an interpreter. Moreover, distributing a program written for a compiler is usually more straightforward than one written for an interpreter--you can just give them a copy of the executable, assuming they have the same operating system as you.

Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving languages, and best suited to more experienced programmers; Pascal, on the other hand, was designed as an educational language, and is quite a good language to start with. FreeBSD does not include Pascal support in the base system, but both GNU Pascal Compiler (GPC) and the Free Pascal Compiler are available in the Ports Collection as lang/gpc and lang/fpc.

As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial compiler makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not include an IDE in the base system, but devel/kdevelop is available in the Ports Collection and many use Emacs for this purpose